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ABSTRACT 
The mathematical model of surface and ground flows of water are observed. Formulated initial - boundary and 

variational problems. We give conditions of the interaction of these two streams on the common border. And 

formulated a theorem on uniqueness and limited solution by variational problem of coupled stream. 
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INTRODUCTION 
To simplify the description of the motion of water flows on the watershed area is held vertical decomposition of 

the problem - the whole area is divided into layers: the surface layer of the atmosphere, land surface, unsaturated 

zone, saturated zone, zone traffic pressure and so on. In each layer to describe the movement of moisture used 

models of different dimensions and their solutions are connected by boundary conditions [4-8]. 

We select in solid medium (liquid) moving surface layer (Figure 1) of such a structure 
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1 20x x . The rest of the surface layer   
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will be called the lateral surface layer  F t . 

Similarly denote part of fluid that moves in the soil, so  
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Then, a layer of ground water  
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Figure 1. General view of the model of flows and their cross-section.  

 

MATERIALS AND METHODS 
1. Initial boundary value problem of interaction of water flows.  

We formulate initial boundary problem of motion of surface and groundwater flows on the surface 

watershed considering boundary and initial conditions [1-3].  
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where {ui(x,t)}3
i=1  and ( , )F Fp p x t  – the sought velocity vector of fluid and hydrostatic pressure, 

respectively;  
3

1
( )i i

F g f x


 – the mass forces; =(x,t)>0 – density of the mass water flow; =(x )>0 – 

coefficient of viscosity;  
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
 – tensors velocities of deformation and stress of the liquid at the 

point x in time t; ij –  Kronecker symbol; ( , )k k x t  - coefficient of filtration; ( , )m m x t  -  the coefficient of 

specific water loss; ( , )x t   - known function of sources of water influx; 

3

pp
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
   -  piezometric pressure;                (4) 

q k     - flow (flow separation);                                                     (5) 

( , )x t   -  the velocity vector of fluid in the ground; 

q



 ,  -  volume porosity; 
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F Pn n   - vectors normal to the boundary area F  and P  in accordance; 

, { }, ,F P F P F P          ; .F F F P P P           

Boundary conditions: 
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where R - velocity of  falling rain drops, u1
0, u2

0 - horizontal components of velocity on the free surface 

( . )x t (
F ); 
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where  I – known function that describes the velocity of  flow of fluid through the surface P .  

Initial conditions:               
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Contact flow conditions on a common boundary Г: 

( , )nn F pu p p  ,                                                                                                          

0n  ,               (13) 

n nu   . 

 

2. Variational formulation of the problem of interaction of water flows. 

We introduce the following bilinear forms: 
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Then write the following variational problem: 
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Calculate considering initial conditions (17) - (19) and boundary conditions (6) - (11), and values of variables u 

and p with relations (14) and (15). Then of conditions of coupling flows (interface conditions) (13) and 

boundary condition (9) the value of the variable   is calculated from (16). 

 

3. The uniqueness and limited solution of variational problems of coupled flow. 

We formulate the following theorem. 

Theorem 1. Let variational problem (14) - (19), data which satisfy the conditions of regularity 
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Then the solution ( ( ), (t))u t   is the single solution of the problem (1) - (13) 
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with constant C>0, the value of which does not depend on the values of our interest. 

Proof. Considering the conditions of the theorem (21), we have 
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Since the initial condition (12) for the function u(t), we have 
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Given the inequality of Poincaré-Fridrihsa [9], has a place next estimation 
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Similarly, from (16) to function ( )t  we write  
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Further, in view of introduced norms in paragraph 4 [1], there is 0C const  that 
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then 

1

0(0) (0) , ( ),
P P P

PH H HC C H              (29) 

From relations (24) - (27) and (29) come to a priori assessment (22). 

On basis of this evaluation by considerations of opposite the uniqueness solution of problem (1) - (13) is proved. 

 

CONCLUSION 
Based on the laws of conservation of considered the basic equations and boundary and initial 

conditions describing the coupled motion flows of surface and of ground water with unknown values of velocity 

and piezometric pressure. Variational problems formulated compatible flow and obtained the contact conditions 

on a common boundary based on the laws of motion a continuous medium. We prove uniqueness and limited 

variation problem solution coupled flow. 
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